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Abstract

In this paper we introduce a new version of the
Pursuit-Evasion problem in which the pursuer is a
2-modem which pursues an unpredictable evader in
a polygonal environment. A 2-modem searcher is a
wireless device whose radio signal can penetrate two
walls. We will present a new cell decomposition of
a given polygon P for the 2-modem searcher such
that the combinatorial representation of the invisi-
ble regions of the searcher remains unchanged. In
other words, when the searcher moves inside a cell,
no evader can move from an invisible region to an-
other one without detecting by the pursuer.

1 Introduction

Consider a simple polygon P is given and there are
some evaders and a pursuer which moves continuously
in it. The classical pursuit-evasion problem asks for
planning the motion of the pursuers in a polygon to
eventually see an evader. During the motion of the
pursuer, some parts of polygon may be invisible for
him; these invisible regions completely depend on the
type of the pursuer and its position in P . Let p be
an arbitrary point in P (as an initial position of the
searcher). A maximal connected closed set of points
inside P which are invisible for p is called a shadow of
p. Actually the shadows of p are the subpolygons of P
which are denoted by Si(p). As shown in [1], when the
searcher moves continuously inside P , four geomet-
ric events may happen for its shadows: merge, split,
appear and disappear. Moreover, when two disjoint
shadows of p merge together and make one connected
subpolygon, it is called the merge event. In contrast,
when a shadow is divided into two components during
the motion of the searcher, it is called the split event.
Sometimes a shadow is destroyed when the searcher
moves; this event is known as the disappear event and
if a new shadow is created, we call it the appear event.

In [2], Guibas et al studied the problem of maintain-
ing the distribution of evaders that move out of view
and inferring the location of these targets from com-
binatorial data extracted by searchers. In this paper,
we consider a special type of searchers, 2-modems. As
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defined in [3], we call a wireless device whose radio
signal can penetrate two walls, a 2-modem. We will
present a new cell decomposition of a given polygon
P for a 2-modem searcher such that the combinato-
rial representation of its shadows remains unchanged.
In other words, when the searcher moves continuously
inside a cell of this decomposition, the merge, appear,
disappear or split event does not occur. The study
of this problem is motivated by robotics applications
such as surveillance, as explained in [2].

2 The 2-Cell Decomposition

In this section, we introduce our new decomposition
of a given polygon P into convex cells, which provides
our main tool for avoiding four events defined above.
It is called the 2-cell decomposition.

Definition 1 Let v and u be two vertices of P . The

vertex u is a critical vertex for v if both of its edges

are in the same half-plane bounded by the line uv.

The 2-cell decomposition is created by three kinds of
lines which are called the partition lines:
1)The lines that are the extensions of both edges of
the reflex vertices of P in it.
2)The portions of the lines through a pair of reflex
vertices which are critical for each other.
3)The lines used in the 2-modem visibility polygon of
each vertex of the polygon which is introduced in [3].

The 2-visibility polygon of a vertex v 2 P is a sub-
polygon of P which is visible by a 2-modem lied on
v. Now we determine the exact portions of these lines
which contribute to the 2-cell decomposition.

Constructing the 2-cell decomposition of P:

i) For each reflex vertex of P , draw the extensions of
its edges until they hit the boundary of P .
ii) For each pair of reflex vertices u and v which are
critical for each other and uv 2 P , draw the line
through uv until it hits @P and then omit uv.
iii) For each vertex v of P , construct the 2-visibility
polygon of v as defined in [3].

For illustration of the lines of type 3 which are in the
2-visibility polygon of the vertices, we provide some
examples. Let u be an arbitrary vertex of P and v be a
critical vertex of u. In Figure 1, we illustrate the parts
of the ray uv which is drawn in 2-cell decomposition
by the bold pieces.

Observation 1 The third type of the segments in

the 2-cell decomposition guarantees neither merge nor
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Figure 1: The bold parts are drawn in 2-cell decom-
position.

split event happen while moving within one cell of the

decomposition.

Now we would like to show that neither appear nor
disappear event occurs when the 2-modem searcher
moves inside a cell. For this purpose, we categorize
the shadows by having at least one vertex of the poly-
gon inside them or not. Thereby, two types of shadows
can be defined as follows:

Definition 2 The type 1 shadow is a shadow which

has at least one vertex of the polygon and the type 2
shadow is a shadow which has no vertex of the poly-

gon; it occurs between two edges of the polygon.

Theorem 1 When the 2-modem searcher moves con-

tinuously in a cell, no vertices of the polygon may

enter into or exit from its shadow.

Proof. Let R be a cell in the 2-cell decomposition
of P . At first we will show that if a searcher at an
arbitrary point p in R has a shadow of type 1, during
the moving from p inside R no vertices of P can exit
from its shadow. Let q be another arbitrary point
inside R such that the searcher has moved to q. Let v
be a vertex of P which is in S(p). Since the cells are
convex, the segment pq is completely inside R. We
suppose for a contradiction that v does not belong to
S(q), so the segment vp must intersect the polygon P

at least three times, but the segment vq can intersect
P at most two times. So there is at least one vertex
inside the triangle pqv that is critical for the vertex v

(otherwise v will be visible for p). We rotate the ray
−!vq around v towards inside the triangle pqv until reach
the first critical vertex for v. This vertex is denoted
by r. The supporting line of the segment vr is one
of the partition lines and intersects the segment pq.
Hence p and q are not in a same cell, a contradiction.
Now similarly, we can show that if a searcher (with a
shadow of type 1 or type 2) moves continuously in a
cell, no vertices of P can enter into its shadow. ⇤

Notice that by Theorem 1, we conclude that if a 2-
modem searcher which has a shadow of type 1, moves
in the cell, the appear and the disappear events cannot
occur for its shadow. Now we will prove this fact for
the case of the type 2 shadow.

Figure 2: mx intersects @P more than once.

Theorem 2 If a 2-modem searcher which is con-

tained in a cell R and has a shadow of type 2, moves

continuously in R, the appear and the disappear

events cannot occur for its shadow.

Proof. Assume that the 2-modem searcher lies on a
point p in R and it has a shadow of type 2 which oc-
curs between two edges of the polygon, named e and
e0. Let q be an arbitrary point inside R such that
the searcher moves to q. Now we erect a coordinate
system with y-axis lined up with the ray −!pq and the
origin at p. We connect the point q to the endpoints
of e and e0 and consider two of these line segments for
constructing a triangle named qq0q” such that both
segments qq0 and qq” intersect both edges e and e0,
see Figure 2. Also the shadow of the point p occurs
between two rays emitted from the point p. The inter-
sections of these rays with e0 are called by p0 and p”.
See Figure 2. If there exists a portion of the triangle
qq0q” enclosed by two edges e and e0 which is not vis-
ible for the point q, we are done. Otherwise, suppose
that the point q can see the whole of this region. As
shown in Figure 2, there is always a vertex of poly-
gon P on the line segment pp0 such that both edges
of m lie below the segment pp0 (because the shadow

of p is started by the ray
−!

pp0). The points t and s are
the intersections of the line qq” with the lines pp0 and
pp”, respectively. em is one of the edges of the vertex
m which makes the smaller angle with the positive x-
axis. Now we consider two cases, the supporting line
of edge em intersects the segment pq or not. At first,
we suppose that it does not have an intersection with
pq. In this case, the vertex m should lie on the seg-
ment pt. For this, we will show that it cannot lie on
the segment tp0. For a contradiction, suppose that m
is on the segment tp0. Since the supporting line of em
does not intersect the segment pq, the edge em will lie
below the line qm. Therefore a portion of the edge e0

will be invisible for the point q and this is a contra-
diction. Consequently, the vertex m should be on the
segment pt. Now we will show that if m lies on the
segment pt, the points p and q cannot be in a same
cell of our decomposition, which is a contradiction.

We assume that the vertex v is one of the two ver-
tices of the endpoints of the edges e or e0 which is
on the segment qq”. Since the supporting line of the
edge em does not have an intersection with the seg-
ment pq and the vertex m is on the segment pt, the
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line em should lie below the line vm. Therefore the
other edge of the vertexm should be below the line vm
(according to the definition of the edge em). Hence,
the vertex m is a critical vertex for the vertex v. We
denote the intersection point of the supporting line of
vm and the segment pq by x (see Figure 2). Since
p and q are inside P , the segment vx intersects the
polygon, one or more times. If it intersects P at ex-
actly one point, the supporting line of vm is again
one of the partition lines and intersects the segment
pq and it means that the points p and q are not in
a same cell, a contradiction. So we can assume that
the segment vm intersects P in at least two points.
First we assume that the segment vx intersects poly-
gon P more than once and the segment vm intersects
P just once, see Figure 2. Note that the segment mx

intersects P at least two times (because the number of
intersections must be odd). Let c and d denote these
intersections. Consider two hypothetical walkers C

and D who traverse the boundary of the polygon P

such that they enter into the triangle mxp, starting
from the points c and d respectively. These two walk-
ers must cross the segment mx or the segment pm

for leaving triangle mxp. Note that if the walkers hit
px, then segment pq will not lie completely inside P ,
that is a contradiction. Note that since the shadow
region S(p) is started by the ray

−!

pp0, at most one of
the walkers D or C can cross the segment pm, thus at
least one of them can cross the segment mx (C). The
polygonal chain traversed by the walker C in triangle
mxp is denoted by CH(C). We rotate the ray −!mp

around m towards inside the triangle mxp until we
reach the first vertex of CH(C). It is clear that it is
critical for the vertex m. Hence in the triangle mxp,
there exists at least one vertex of P which is critical
for m. So we can rotate the ray −!mp around the point
m towards inside the triangle mxp, until we reach the
first ”critical” vertex for m in the triangle mxp, which
is denoted by u. See Figure 2. The intersection of the
supporting line of mu and the segment pq is denoted
by z. We distinguish two cases: the polygon P in-
tersects the segment mz or not. If it intersects the
segment mz, it will not intersect more than once be-
cause the vertex u is the first vertex which is reached
by rotating mx, so there is a part of the ray −!us which
belongs to the partition lines and intersects the seg-
ment pq at the point z, a contradiction. Now if the
polygon P does not intersect the segment mz, so the
vertices u and m are reflex and critical for each other,
then the segment uz belongs to the partition lines and
that is a contradiction. Now we can assume that the
segment vm intersects P in at least two points, a and
b. See Figure 3. Consider two hypothetical walkers A
and B who traverse the boundary of the polygon P

such that they enter into the triangle vmp, starting
from the points a and b respectively. One of these two
walkers should pass over the line vm. Because other-

Figure 3: mv intersects @P more than once.

wise, the walkers should intersect the line tm or the
line vt. It is clear that both of them cannot leave the
triangle vmt from the line tm. Because the ray

−!

pp0 de-
termines the border of the shadow region S(p). Thus
at least one of them (A) should cross the segment vt.
In this way, the walker A enters into the triangle vtp0,
and for leaving this triangle it should cross the line
p0t. Because otherwise, it will be an obstacle for the
point q (it can only cross the line qq”). On the other
hand, the walker B cannot cross the line tm, because
the walker A intersects the line p0t. The walker B

cannot cross the same line, because the ray
−!

pp0 deter-
mines the starting of the shadow region S(p). Also the
walker B cannot cross the line vt. Because otherwise,
it will be an obstacle for q (note that according to our
assumption the walker A crosses the line vt). So the
walker B should intersect the line vm. The polygo-
nal chain traversed by the walker B in triangle vtm is
denoted by CH(B) . We rotate the ray

−!
mt around m

towards inside the triangle vtm until we reach the first
vertex of CH(B). Obviously, this vertex is critical for
the vertex m. Then we can assume that there exists
always a critical vertex for m in the triangle vtm. So
we can rotate the ray

−!
mt around the point m towards

inside the triangle vtm, until we reach the first ”criti-
cal” vertex form in the triangle vtm, which is denoted
by v0. It is clear the vertices v0 and m are critical for

each other. The intersection of the ray
−−!

mv0 and the
segment pq is denoted by y. Note that the segment
mv0 intersects P at most once (otherwise the vertex
v0 is not the first critical vertex). We distinguish two
cases: the polygon P doesn’t intersect the segment
mv0 or just one intersection occurs. In the first case,
it is clear that the vertices v0 and m are reflex and
critical for each other, so the supporting line of v0m
will be one of the partition lines and intersects the
segment pq and it means that the points p and q are
not in a same cell, a contradiction. In the second case,
when the polygon P just has one intersection with the
supporting line of mv0, there exists a part of the seg-
ment my which belongs to a partition line. It can be
shown that the points p and q are not in a same cell
which is a contradiction (similar to the way described
above for the case of the vertex u is a critical vertex
for the vertex m). According to the above discus-
sion, we have reached a contradiction when the edge
em does not intersect the segment pq, hence the sup-
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Figure 4: em intersects pq.

porting line of em must intersect the segment pq. See
Figure 4. Note that the point q is inside the polygon
P , then the segment qq0 must have at least another
intersection with the polygon, except at e. Also, we
know that the point q0 is visible for q, hence the seg-
ment qq0 should intersect P at most once, except at
e. This intersection is denoted by l. Now we consider
a hypothetical walker L who traverses the boundary
of P inside the triangle qq0q”. This polygonal chain is
denoted by CH(L). The walker L should intersect the
segment pp0 for leaving the quadrilateral p0q0pq. This
intersection point is denoted by l0. We distinguish two
cases: the point l0 lies on the segment mp0 or pm. In
both cases we will reach a contradiction. First, we
suppose the point l0 lies on the segment mp0. In this
case, it is clear that the segment mq cannot intersect
the polygon P (otherwise the point q0 is invisible for
the point q or P is not a simple polygon). In addition,
it is easy to show that the vertex m is a reflex vertex
(because of the number of intersections between the
segment mq and P and q is an interior point of P ).
Thus the supporting line of em is one of the parti-
tion lines and intersects the segment pq and it means
that the points p and q are not in a same cell, a con-
tradiction. In the second case where we consider the
point l0 lies on the segment mp, the vertex m must
be on the segment tp. Otherwise, since l0 is on the
segment mp, the polygonal chain traversed by walker
L from l to l0 is intersected by the segment mq, so
q cannot see whole segment qq0. Therefore the edge
em will be inside the triangle vtm and it cannot cross
the segment tm (note that the shadow region S(p) is

started by the ray
−!
pp0), furthermore it cannot cross

the segment tv (because L crosses the segment qq”
once, hence the vertex q” is not visible by q). Thus
the polygonal chain in the triangle vtm crosses the
segment vm at least one time. Thereby there exists
always one vertex inside the triangle tvm. We rotate
the ray

−!
vt around the point v towards inside the tri-

angle vtm, until we reach the first ”critical” vertex for
v in the triangle vtm (because v0 is the first vertex,
the polygon P doesn’t intersect the segment qq” and
the vertex q should see q”). This vertex is denoted
by v0. The intersection of the supporting line of vv0

and the segment pq is denoted by y. If the segment
v0y intersects the polygon just once (on CH(L)), the
supporting line of v0y is one of the partition lines (be-

cause vertex v0 is a critical vertex for the vertex v)
and intersects the segment pq and it means that the
points p and q are not in a same cell, a contradiction.
Then we suppose that segment v0y intersect P more

than once. All of these intersections are inside the tri-
angle tqp (when the ray

−!
vt is rotated towards inside

the triangle vtm, the vertex v0 is the first vertex).
The segment qq” should intersect the polygon P just
on CH(L) (q should see q”). So if the segment vy in-
tersects the polygon P except on CH(L), then there
exists a vertex inside region S = 4tpq \ 4qq”y. We
rotate the ray −!vq around the vertex v toward in trian-
gle tpq until we reach the first ”critical” vertex for v in
the region S which is denoted by u. The supporting
line of uv intersects P just once on CH(L) (otherwise
the vertex v0 is not the first critical vertex). Thus the
supporting line of uv is one of the partition lines and
intersects the segment pq and it means that the points
p and q are not in a same cell, a contradiction. In all
above cases, we showed that there is always a part of
the segment q0q” which is not visible from q. Hence q

should have a shadow between e and e0.
Also in a similar way, it can be shown that no ap-

pear event occurs. ⇤

Due to Theorems 1 and 2, when a 2-modem moves
continuously in a cell, neither disappear nor appear
event can happen, i. e., the 2-cell decomposition guar-
anties that the combinatorial representation of the in-
visible regions of the searcher remains unchanged.

3 Conclusion

In this study, we considered a new version of Pursuit-
Evasion problem and introduced a new decomposition
of a given polygon into convex cells which assures that
no evader can move from an invisible region to an-
other one without detecting by the pursuer while the
searcher moves inside a cell. Moreover it can be shown
that the number of cells in the 2-cell decomposition is
O(n3), but it takes a bit of e↵ort. Also the complexity
of the algorithm is the same.
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