
CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Conflict-Free Chromatic Guarding of Orthogonal Polygons
with Sliding Cameras

Yeganeh Bahoo∗ Onur Çağırıcı∗ Kody Manastyrski∗ Rahnuma Islam Nishat† Christopher Kolios∗

Roni Sherman∗

Abstract

In conflict-free chromatic guarding of a polygon, every
guard is assigned a color such that every point in the
polygon, including the points on the boundaries, must
see at least one unique color. The goal of this prob-
lem is to minimize the number of colors needed. In
this paper, we study the conflict-free chromatic guard-
ing of simple orthogonal polygons with sliding cameras,
where cameras are allowed to slide along the length of
the corresponding edge. We investigate two versions of
the Conflict-free Sliding Camera problem: for orthogo-
nal polygons without holes (CFSC), and for orthogonal
polygons with holes (CFSC-H), we show that two col-
ors are always sufficient and sometimes necessary for a
CFSC, and give an O(n log n) time algorithm to com-
pute a CFSC using two colors, where n is the number
of vertices of the polygon. We give an O(n log n) time
algorithm to obtain a CFSC-H using three colors. We
also show that for a special case of CFSC-H two colors
suffice.

1 Introduction

The polygon guarding problem is a well-studied prob-
lem in the field of computational geometry, which is
also known as the art gallery problem [7, 18]. Given a
polygon P , the goal of the polygon guarding problem is
to find the minimum number of guards needed so that
any point in P is visible to at least one guard. Two
points p and q are visible to each other when the line
segment pq, also known as line-of-sight visibility, does
not intersect any edges of P . This problem has been
studied in many different settings, such as for general
polygons [10, 11, 17], for weak-visibility polygons [2, 3],
and for orthogonal polygons [15, 16].

The very first version of this problem, introduced by
Victor Klee [18] considered line-of-sight visibility. Later,
variations of the problem were studied while assuming

∗Department of Computer Sciece, Toronto Metropoli-
tan University, Toronto, ON, Canada, {bahoo, cagirici,

kody.a.manastyrski, ckolios, roni.sherman}@torontomu.ca
†Department of Computer Science, Mathematics, Physics and

Statistics, University of British Columbia, Kelowna, BC, Canada,
rahnuma.nishat@ubc.ca

different visibility models, such as α-visibility [14], and
π-visibility [19].

(a) (b)

Figure 1: (a) An assignment with conflicts: the yel-
low region is covered by two blue guards and no green
guards; the blue-green region has a blue and a green
guard and causes no conflict. (b) A conflict-free assign-
ment.

Although Fisk applied graph coloring in the proof of
bounds in art gallery problems [13], chromatic guard-
ing of polygons is a more recent topic. In chromatic
guarding problem, we look for a set of guards such that
each point of the polygon is visible to a subset of the
guards and assign a color to each guard from a set of
available colors. The set of guards along with the color
assignment is conflict-free if for each point of the poly-
gon, there is at least one guard with a unique color [1].
Conflict-free chromatic guarding has applications in the
assignment of radio frequencies to sensors placed on the
vertices of the polygon to guide mobile robots in trian-
gulating their positions in the polygon [1, 5].

Conflict-free chromatic guarding has been studied in
the context of orthogonal polygons, and bounds have
been given on chromatic numbers χP of an orthogo-
nal polygon P , i.e., the minimum number of colors re-
quired to guard P without conflict. Given a polygon P ,
Bärtschi and Suri [1] showed that χP ∈ O(log n), where
n refers to the number of vertices of the polygon, by sub-
dividing P into “weak-visibility suppolygons”. Erickson
and LaValle [12] showed that for orthogonal staircase
polygons, the bound is χP ≤ 3.
In this work, we use sliding cameras as guards [4, 8,

9, 16], where a guard or camera is directional (i.e. it
has directional view oriented towards the interior of the
given polygon) and can travel along a boundary edge

63



35th Canadian Conference on Computational Geometry, 2023

of the polygon. See Figure 1(b) for an example, where
sliding cameras or guards are assigned (only to horizon-
tal) edges of the polygon. Note that two consecutive
horizontal edges on the polygon have not been assigned
cameras of the same color as that would create conflict
at the boundary of the two guarded regions. Through-
out the paper, the terms sliding camera and guard are
used interchangeably.

Our contributions. We give upper and lower bounds
on χP for both CFSC and CFSC-H. In Section 3, we
prove that two colors are sometimes necessary and al-
ways sufficient for a conflict-free chromatic guarding
of an orthogonal polygon without holes. Our bound
on the chromatic number is tight. We also give an
O(n log n) time algorithm that solves CSFO with two
colors, where n refers to the number of vertices of P . In
Section 4.1, we propose an O(n log n) time algorithm to
solve a CSFO-H, using three colors (χP ≤ 3). Finally, in
Section 4.2, we study a special case of CFSC-H, where
each hole has a rectangular boundary and the order of
the holes inside the polygon is X-monotone. In this
case, we show that two colors are sufficient (χP = 2).
In all our algorithms, the outer boundary of the polygon
and the boundaries of the holes are axis-parallel.

2 Preliminaries

We define the terminology used throughout the paper.

A simple polygon P is an enclosed area in the Eu-
clidean plane bounded by a finite number of straight
line segments that form a polygonal chain; each such
straight line segment is called an edge of P , and a pair
of edges meet in a vertex. In this paper, first we consider
simple polygons; i.e. no pair of edges intersect except at
their common endpoints (vertices). Starting from Sec-
tion 4, we suppose that a polygon with holes is given. A
polygon with holes is a polygon enclosing several other
polygons; the inner polygons are known as holes.

The boundary of P is the closed polygonal chain
formed by the edges of P . We assume that the bound-
ary is directed clockwise, i.e., while walking along the
boundary of the polygon the interior would always be
on the right. The vertices of a polygon are denoted by
v1, v2, . . . , vn in clockwise order. The edge that connects
the pair of vertices vi and vi+1 is denoted by ei, where
1 ≤ i ≤ n, and the edge from vn to v1 is denoted by en.

The polygon P is called an orthogonal polygon, if ev-
ery pair of consecutive edges are perpendicular to each
other. Throughout this manuscript, we assume that a
given orthogonal polygon is oriented in a way such that
each edge is parallel to either x-axis (horizontal), or y-
axis (vertical). We classify the edges as north-facing,
south-facing, east-facing and west-facing depending on
the orientation of the perpendicular ray towards the in-
terior of the polygon.

An X-monotone polygon is an orthogonal polygon
that intersects any vertical line � at most twice, where
an intersection is either a point on a horizontal edge of
the polygon, or an entire vertical edge.

Definition 1 A maximal monotonous south-facing
chain is a maximal set of south-facing edges e1, . . . , ek
such that the x-coordinates of the starting points of the
edges are in increasing order, and ei and ei+1, for each
i < k, are connected by a vertical edge.

Let S be the set of all maximal monotonous south-
facing chains S1, S2, . . . , Sq in P . For any chain Si ∈ S,
we denote the edges of Si by ei1, e

i
2, . . . , e

i
ki

from left
to right. The visibility region of a chain S of S is the
region of P , including the boundary of P , that is visible
to the guards assigned to the edges of S. We observe
the following property of the set S.

Lemma 1 A sliding camera at each edge of S collec-
tively guards the entire polygon P .

Proof. From any point p ∈ P , if we draw a vertical line
upward, the first edge e that the line intersects must be
south-facing; hence, e must belong to a chain in S. �

Lemma 1 forms the basis of our algorithms in this
paper, where we find efficient ways to put a camera on
each of the edges of S such that the number of colors
needed for a conflict-free guarding of P is minimized.

We use blue, red and green for the three colors as-
signed to guards or cameras. When a guard is assigned
a color, say red, we write red guard or red camera.

3 Orthogonal polygons without holes

In this section, we discuss the CFSC problem (for or-
thogonal polygons without holes) and give tight upper
and lower bounds on the conflict-free chromatic number
χP for them. We show that two colors are sometimes
necessary and always sufficient to guard an orthogonal
polygon with sliding cameras, thus giving a lower and
an upper bound on the number of colors required to
guard any orthogonal polygons. The lower bound holds
for polygons with holes as well.

We first prove the lower bound on χP .

Theorem 2 There exists an orthogonal polygon that
requires sliding cameras of at least two colors for CFSC.

Proof. Let P be the orthogonal polygon in Figure 2.
By exhaustive search, we conclude that a sliding camera
on any of the 8 edges of P cannot guard the whole poly-
gon. If there exists only one color of gaurds, any com-
bination of guards in this figure will result in a conflict
as no consecutive edges of P can be assigned the same
color. Therefore, we need at least two cameras. The

64



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

visibility regions of any two cameras guarding P will in-
tersect at least at the boundaries. Therefore, we must
need at least two different colors for the cameras. �

(a) (b)

Figure 2: (a) Two black guards guarding the whole poly-
gon; the patterned regions are visible to a single guard,
and the solid region to both guards. (b) A conflict-
free guarding by a black (patterned regions) and a gray
guards. The dark solid region is covered by both guards.

We now show that two colors are always sufficient
for a CFSC of any given orthogonal polygon. First,
we describe an algorithm to obtain a CFSC for an X-
monotone polygon, and then we generalize the idea to
non-monotone polygons.

By definition, an X-monotone polygon P has exactly
one maximal monotonous south-facing chain S. We
place a blue camera on all the edges ei of S, where
i is odd, and a red camera on the edges ei, where i
is even; see Figure 3 for an example. We name this

e1

e3

e4

e6

e5

e8

e7

e9

e2

Figure 3: Two colors are sufficient to guard a monotone
orthogonal polygon.

algorithm CFSC-monotone. The following theorem
proves the correctness and running time of the above
algorithm. The proof is in the appendix.

Theorem 3 Algorithm CFSC-monotone computes a
CFSC of an X-monotone polygon P without holes in
O(n) time using only two colors, which is optimal.

Now consider the case where the input polygon P is
not X-monotone. Then S has more than one chain. We
then need some special data structure to assign colors
to the edges in S efficiently.

u

v
w

s

t

(a)

s

u

v

(b) (c)

s

v

u t

Figure 4: Maximal monotonous south-facing chain with
(a) no upward connection, (b) one upward connection,
and (c) two upward connections.

Before describing the data structures for our algo-
rithm, we need to define some terminology. Let the
vertical edges preceding and following a chain Si ∈ S
be (u, v) and (s, t), respectively, where v and s are the
endpoints of the first edge ei1 and last edge eik of Si, re-
spectively. If u has a higher y-coordinate than v then we
say that ei1 is a upward connection Si. Similarly, eik is an
upward connection of Si if t has a higher y-coordinate
than s. Clearly, Si can have upward connections 0, 1,
or 2 as shown in Figure 4.

We now describe the data structures we need. In
the preprocessing step, we populate a list called L that
stores pointers for each S ∈ S of the chains that are
influenced by or influence the coloring of S. For this
we build a trapezoidal map T and the associated search
structure D with the south-facing edges of P using the
algorithm proposed in [7]. Therefore, with each edge,
the chain associated with S is given. Now for each up-
ward connection v of each S ∈ S, we traverse the search
structure D to find the edge e and the associated chain
Si just above v. Let v be incident to edge e� in S. We
then put (e�, e, Si) in the L entry of S, and put (e, e�, S)
in the corresponding entry for Si. Building T and D
takes expected O(n log n) time using the incremental
randomized algorithm in [7], and finding the edge above
each endpoint takes O(log n) time. Therefore, L can be
populated from D in O(n log n) time.

Figure 5 shows an orthogonal polygon without holes,
and Table 1 shows the corresponding data structure L.

We now briefly describe the algorithm for assigning
two-color sliding guards to the edges of S to obtain
a conflict-free guarding of P . We call the algorithm
CFSC-TwoColors.

We pick any chain S from S and assign guards to the
chain by putting a red camera on the edges ei, where
i is odd, and a blue camera on the edges ei, where i is
even. For each entry (e, e�, S�) in the influence list L of
S, where e is an edge of S and c(e) denotes the color

65



35th Canadian Conference on Computational Geometry, 2023

S1

S2

S3

S4

S5

S6

e11

e61
e51

e41

e22

e23

e32

e12

e21

e31

Figure 5: The chains in S are shown, with the edges,
and the upward connections with dotted lines.

Si influence list
S1 (e61, e

1
2, S6), (e

2
1, e

1
2, S2)

S2 (e21, e
1
2, S1), (e

5
1, e

2
1, S5), (e

3
1, e

2
3, S3)

S3 (e23, e
3
1, S2), (e

3
1, e

4
1, S4)

S4 (e41, e
3
1, S3)

S5 (e51, e
2
1, S2)

S6 (e61, e
1
2, S1)

Table 1: Data structure L for the polygon in Figure 5.

assigned to edge e, we put (c(e), e�, S�) in a queue Q. In
the next step, when we remove that entry (c(e), e�, S�)
from Q, we assign the opposite color of c(e) to e� of S�,
and continue to assign alternating colors to the edges
on each side of S�. After that, we put all the chains in
the influence list of S� that have not been colored into
Q. We stop when the queue is empty.
Figure 6 shows how the algorithm works by showing

the first step. The following theorem proves the cor-
rectness and running time of the algorithm. See the
appendix for the complete proof.

S1

S2

S3

S4

S5

S6

(blue, e12, S1), (blue, e
5
1, S5), (blue, e

3
1, S3)Q

Figure 6: A CFSC with two colors, after assigning colors
to the edges of S2 ∈ S; and the queue Q after coloring
S2.

Theorem 4 Algorithm CFSC-TwoColors computes

a CFSC of an orthogonal polygon P without holes in
O(n log n) time using two colors.

Proof Sketch. After coloring a chain S, if we remove
the visibility region of S from P , we get disjoint sub-
polygons for each of which only one endpoint of one
south-facing edge has been assigned a color. Since the
corresponding chain S� is placed in Q before any other
chains in that sub-polygon, S� also gets a conflict-free
coloring. By inductively applying the above logic, we
can prove the correctness. Assigning colors to all the
south-facing edges takes O(n) time. Building T , D,
and then populating L from D takes O(n log n) time.
Therefore, the total time is O(n log n).

4 Orthogonal polygons with holes

In this section, we study the problem conflict-free chro-
matic guarding of orthogonal polygons with holes or
CFSC-H for short. We first give an algorithm that
we call CFSC-H-ThreeColors that uses three colors,
thus proving an upper bound on the chromatic number
for orthogonal polygons with holes.We also define a spe-
cial class of polygons for which two colors are sufficient
for CFSC-H, and give an algorithm to achieve such an
assignment of colors.

4.1 Three colors are sufficient

Let P be an orthogonal polygon with holes (see Figure 7
for an example), and let S be the set of all maximal
monotonous south-facing chains in P . Note that the
chains in S belong to the outer boundary of P as well as
the holes of P . By Lemma 1, a guard assigned to each of
the south-facing edges, including the south-facing edges
on the holes, covers the entire polygon P . Therefore,
our goal is to assign a guard to each of the south-facing
edges in a conflict-free manner.

S1

S2

S3

S4

Figure 7: An orthogonal polygon with an orthogonal
hole shown in blue; outer boundary has one and the hole
has three maximal monotonous south-facing chains.

Since we are allowing one more color to be used than
CFSC, a straightforward idea could be to follow a sim-
ilar techniques to Algorithm CFSC-TwoColors from
the previous section. However, that may not be pos-
sible. Take the polygon P in Figure 7 as an example.

66



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Suppose that we first assign guards to S3, which puts
S2 and S4 in Q. After assigning guards to S2, the queue
Q contains S4 and S1. Now when we assign guards to
S4, we either have to put a duplicate entry for S1 in the
Q, or retrieve S1 from Q to update the color constraints
and then put it back again. In either case, searching the
queue Q for an entry for a specific chain increases the
time complexity of the algorithm. Therefore, we need
some tool to obtain an efficient algorithm for CFSC-H.
In this regard, we introduce the notion of relationship
graph.

Definition 2 (Relationship graph) The relation-
ship graph GS,P of P is a directed graph whose nodes
are the chains of S such that for each pair of chains
S, S� ∈ S, G has a directed edge from S to S� for each
upward connection of S that is in the visibility region
of S�. See Figure 8 for an example.

S1

S5
S6S4

S3

S2

S8

S7

(a)

S1

S2 S7 S5

S3 S4

S8

S6

(b)

Figure 8: (a) Set S of maximal monotonous south-facing
chains of orthogonal polygon P with holes, the holes are
blue. (b) The relationship graph GS,P .

We observe some properties of GS,P .

Lemma 5 GS,P is a directed acyclic graph (DAG)
where each node of G has at most two outgoing edges.

Proof. Since P is connected and simple, by Defini-
tion 2, there cannot be a directed cycle. Since a chain
can have at most two upward connections, the num-
ber of outgoing edges of a node of G must be at most
two. �

We can build the relationship graph GS,P of P us-
ing the trapezoidal map T of the chains of S as in the
previous section. For each upward connection e of each
S ∈ S, we traverse the search structure D associated
with T to find the edge e� and the associated chain S�

just above e. Let v be incident to edge e in S. We
then add the edge (S, S�) with the label (e, e�) in GS,P .
Building T and D takes expected O(n log n) time using
the incremental randomized algorithm in [7], and find-
ing the edge above each endpoint takes O(log n) time.

Therefore, the relationship graph G can be built from
D in O(n log n) time.

We now describe Algorithm CFSC-H-
ThreeColors. Since GS,P is a DAG by Lemma 5,
we obtain a topological ordering of the nodes of the
graph [6] in O(n) time. We then assign guards to the
chains of S according to topological ordering. For any
chain S ∈ S, one of these cases holds. Case 1. S
does not have any upward connections. We
place a blue camera at all edges ei, where i is odd,
and a red camera when i is even. Case 2. S has
only one upward connection. Let the label of the
upward connection edge be (e, e�) where e belongs to S.
Without loss of generality, assume that c(e�) is red. We
then color e blue, and on either side of e, we assign red
and blue cameras alternatingly to the rest of the edges
of S. Case 3. S has two upward connections.
Let the labels of the upward connections be (e1, e

�
1)

and (eq, e
�
q) where e1 and eq are edges of S. Without

loss of generality, assume that e�1 is colored red. If e�q is
also red, we color e1, . . . , eq with colors blue and green
alternatingly. If e�q has a different color than e�1, say
blue, we assign the colors green and red to e1, . . . , eq
starting with green. Then, we will not have conflict
whether q is odd or even.

We now prove the correctness and time complexity of
the algorithm. See the appendix for the complete proof.

Theorem 6 CFSC-H-ThreeColors computes a
conflict-free chromatic guarding of an orthogonal
polygon P in O(n log n) time using three colors.

Proof Sketch. The correctness follows from the fact
that the topological ordering of the chains would ensure
that any chain S with an upward connection to another
chain S� would be colored after S. The calculation of
running time is similar to Theorem 4.

4.2 Special case: monotonous rectangular holes

We describe a restricted class of orthogonal polygons,
where the boundary of each hole is a rectangle and
the order of the holes inside the polygon is monotone
with respect to either x-axis or y-axis; see Figure 9(a).
We call this restricted class of polygons orthogonal poly-
gons with monotonous rectangular holes. Without loss
of generality, we assume that the order of the holes is
X-monotone. We give an algorithm that we call CFSC-
H-TwoColors to obtain a CFSC-H using two colors.

Let S and H be the sets of maximal monotonous
south-facing chains from the outer boundary of P
and from the holes of P . As in Algorithm CFSC-
TwoColors, we build the trapezoidal map T with S
and H, and from it we build the data structure L. How-
ever, when checking the search structure of T for the
edges above a chain H ∈ H, we add all the chains that
are above H.

67



35th Canadian Conference on Computational Geometry, 2023

S1

S5
S6S4

S3

S2 H2 H3

H1

H1 H2 H3 H4

(a)

H4

S2

S3

S4

S5

S6

S1
H1 H2 H3

H4

(b)

H4

Figure 9: (a) An orthogonal polygon with rectangular
X-monotone holes; the projection of the hole bound-
aries on the X-axis are nonoverlapping. (b) List of holes
under each chain ordered from left to right according to
the holes’ projections on the X-axis.

We need another data structure to keep track of holes
that are directly under a chain S ∈ S. We consider the
list A in Figure 9(b), where the holes directly under a
chain S are listed from left to right. We can populate
A at the same time as L; and later sort each individual
list of holes for each chain in S in ascending order of the
x-coordinates of the holes.

AlgorithmCFSC-H-TwoColors uses the same idea
as Algorithm CFSC-TwoColors. For the first chain
S chosen, we start from the leftmost edge e1 of S. We
assign blue to e1, red to e2, and continue this way until
we reach a hole H1 under S. Let e�, e�� ∈ S, where e� =
e�� may hold, be the two edges intersected by the two
vertical edges of hole H when extended in the direction
of positive y-axis. We assign the same color to all the
edges of S from e� to e��, and assign the opposite color
to e� to the top edge and the bottom edge of H1. We
then continue as before until we reach the next hole H2

and follow the same procedure.

After coloring S and all the holes under it, we put
the entries for all the uncolored chains in S that are
influenced by the coloring of S in the queue Q. Since all
the holes under S have already been colored, no holes
will be added to Q at this step. Then for each hole
Hi under S, we check if a chain S� influenced by it is
already in Q. If S� is in Q, that means that it is also
influenced by S. Then both S and S� must be above Hi

and influenced by the guard of the north-facing edge eh
of Hi. Then we can assign the same color to all edges
of S and S� that are in the visibility region of eh. So
we remove the entry for S� from Q and add a new entry
that applies the opposite color of eh to the visible edges
of S�. Since the holes are X-monotone, no holes would
be added to Q at this stage also.

We then remove the chain at the front of Q and apply

the same procedure. We keep dequeuing chains from Q
and assigning guards to them until Q is empty. Note
that since the holes under a chain are colored at the
time of coloring the chain, no hole would be added to Q
at any point. Figure 10 describes some scenarios that
may occur. Note that, in the case where e�� belong to
a different chain Sj �= Si (as in S5 and S6 for the hole
H4 in Figure 9), the guards on the top edge of H will
see some edges of Sj . When coloring Sj , we propagate
the opposite color of H on Sj from where the visibility
of the top edge of H ends.

H H

e′

e′′

(b)

e′ = e′′

(a)

H

e′
e′′

(c)

Figure 10: Different scenarios when assigning colors to
the hole; the dark gray regions are covered by one blue
(black patterned) and one red (solid light gray) guard:
(a) e� = e��, (b) e�, e�� are adjacent, and (c) there are
edges between e� and e��.

The following theorem summarizes the time complex-
ity and correctness of the above algorithm.

Theorem 7 Algorithm CFSC-H-TwoColors com-
putes a CFSC-H of an orthogonal polygon P with
monotonous rectangular holes in O(n2) time using two
colors.

Proof. Building the data structure L and A takes
O(n log n) time each by Theorem 4. Sorting all lists
in A takes O(n log n) time in total. Since the holes are
colored at the time of coloring the chains, the coloring
is done in O(n) time. However, when adding chains in-
fluenced by a hole, we have to look for them in Q. This
may take O(n) time. Therefore, the total running time
of the algorithm is O(n2). �

5 Conclusion

We have given an O(n log n) time algorithm for CFSC
with two colors for orthogonal polygons without holes
and showed that the bound is tight. We have given
an O(n log n) time algorithm for CFSC-H with three
colors for polygons with holes, while a special case re-
quires two colors. The question of whether two colors
are sufficient for the general case of CFSC-H remains
open. In our algorithms, the guards are placed only on
horizontal edges. It would be interesting to investigate
whether less guards are needed when placed on vertical
and horizontal edges.

68



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] A. Bärtschi and S. Suri. Conflict-free chromatic art
gallery coverage. Algorithmica, 68:265–283, 2014.

[2] P. Bhattacharya, S. K. Ghosh, and B. Roy. Vertex
Guarding in Weak Visibility Polygons. In CAL-
DAM, pages 45–57, 2015.

[3] P. Bhattacharya, S. K. Ghosh, and B. Roy. Ap-
proximability of guarding weak visibility polygons.
Discrete Applied Mathematics, 228:109–129, 2017.

[4] T. Biedl, T. M. Chan, S. Lee, S. Mehrabi, F. Mon-
tecchiani, and H. Vosoughpour. On guarding or-
thogonal polygons with sliding cameras. In WAL-
COM: Algorithms and Computation: 11th Inter-
national Conference and Workshops, WALCOM
2017, Hsinchu, Taiwan, March 29–31, 2017, Pro-
ceedings, pages 54–65. Springer, 2017.

[5] O. Çağırıcı, S. K. Ghosh, P. Hliněný, and B. Roy.
On conflict-free chromatic guarding of simple poly-
gons. In COCOA, 2019.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, Second Edi-
tion. The MIT Press and McGraw-Hill Book Com-
pany, 2001.

[7] M. de Berg, O. Cheong, M. Kreveld, and M. Over-
mars. Computational Geometry, Algorithms and
Applications. Springer-Verlag, 3rd edition, 2008.

[8] M. de Berg, S. Durocher, and S. Mehrabi. Guard-
ing monotone art galleries with sliding cameras in
linear time. Journal of Discrete Algorithms, 44:39–
47, 2017.

[9] S. Durocher, O. Filtser, R. Fraser, A. D. Mehrabi,
and S. Mehrabi. Guarding orthogonal art galleries
with sliding cameras. Comput. Geom., 65:12–26,
2017.

[10] A. Efrat and S. Har-Peled. Guarding galleries and
terrains. Inf. Process. Lett., 100:238–245, 2006.

[11] S. Eidenbenz, C. Stamm, and P. Widmayer. Inap-
proximability Results for Guarding Polygons and
Terrains. Algorithmica, 31:79–113, 2001.

[12] L. H. Erickson and S. M. LaValle. An art gallery
approach to ensuring that landmarks are distin-
guishable. In Robotics: science and systems, vol-
ume 7, pages 81–88, 2012.

[13] S. Fisk. A short proof of Chvátal’s watchman the-
orem. J. Comb. Theory, Ser. B, 24:374, 1978.

[14] M. Ghodsi, A. Maheshwari, M. N. Baygi, J.-R.
Sack, and H. Zarrabi-Zadeh. α-visibility. Comput.
Geom. Theory Appl., pages 435–446, 2014.

[15] C. Iwamoto and T. Ibusuki. Computational Com-
plexity of the Chromatic Art Gallery Problem for
Orthogonal Polygons. In WALCOM, pages 146–
157, 2020.

[16] M. J. Katz and G. Morgenstern. Guarding Or-
thogonal Art Galleries with Sliding Cameras. Int.
J. Comput. Geometry Appl., 21:241–250, 2011.

[17] J. King and D. G. Kirkpatrick. Improved Approx-
imation for Guarding Simple Galleries from the
Perimeter. Discrete & Computational Geometry,
46:252–269, 2011.

[18] J. O’Rourke. Art Gallery Theorems and Algo-
rithms. Oxford University Press, 1987.

[19] J. Urrutia. Chapter 22 - Art Gallery and Illumi-
nation Problems. In Handbook of Computational
Geometry, pages 973–1027. Elsevier, 2000.

69



35th Canadian Conference on Computational Geometry, 2023

Appendix

Lemma 1. A sliding camera on each south-facing edge
of S collectively guards the entire polygon P .

Proof. From any point p ∈ P if we draw a vertical line
upward, the first edge e that the line intersects must be
south-facing. Then e must belong to one of the chains
in S. Therefore, each point of P is covered by an edge
of S, and thus putting a sliding camera on each of these
edges will cover the whole polygon. �

Theorem 3. Algorithm CFSC-monotone computes
a CFSC of an X-monotone polygon P without holes in
O(n) time using only two colors, which is optimal.

Proof. By Lemma 1, a sliding camera on each edge of
S will guard the whole polygon. Since we are assign-
ing alternating colored guards for adjacent edges of S,
each point of P will have at least one unique colored
guard. The guards can be assigned by a walk along the
boundary of P , which takes O(n) time. By Theorem 2,
the lower bound for the number of colors needed for the
guards is also two. Therefore, the number of colors used
in this algorithm is optimal. �

Theorem 4. Algorithm CFSC-TwoColors com-
putes a CFSC of an orthogonal polygon P without holes
in O(n log n) time using two colors.

Proof. We first prove that the algorithm assigns guards
to all the south-facing edges of P using only two colors.
It is easy to see that the first chain S considered by
the algorithm gets a conflict-free coloring with two col-
ors. Now, if we remove the visibility region of S from
P , we get disjoint sub-polygons P1, P2, . . . , Pq for some
q < n. For each Pi, 1 ≤ i ≤ q, only one endpoint of
one south-facing edge has been assigned a color. Since
the corresponding chain S� is placed in Q before any
other chains in that sub-polygon, S” gets a conflict-free
coloring with two colors. We then remove the visibility
region of S� and prove the claim inductively for all the
Si ∈ S.
We now prove the running time of the algorithm.

We assume that P is input as the sequence of ver-
tices v1, . . . , vn in clockwise order. Then we can find
the chains in S by walking around the polygon. We
represent each chain S ∈ S by a tuple (vi, vj), where
vi is the first vertex and vj is the last vertex of S
on the walk. The south-facing edges in S can eas-
ily be calculated from the indices of the end vertices
of S as ei, ei+2, . . . , vj−1. Therefore, assigning colors
to all the south-facing edges takes O(n) time. Build-
ing the trapezoidal map T , searching the structure D,
and then populating the data structure L from D takes
O(n log n) time. Therefore, the total time required is
O(n log n). �

Theorem 6. Algorithm CFSC-H-ThreeColors
computes a conflict-free chromatic guarding of an or-
thogonal polygon P in O(n log n) time using three col-
ors.

Proof. The correctness follows from the fact that the
topological ordering of the chains would ensure that any
chain S with an upward connection to another chain S�

would be colored after S.
We assume that the outer boundary of P is given as a

clockwise sequence of vertices on it, and the hole bound-
aries are given as counterclockwise sequence of vertices
on them. Building the trapezoidal map T takes ex-
pected O(n log n) time, and building the graph G from
the search structure takes O(n log n) time. We obtain
a topological ordering of the chains of S from the DAG
G in O(n) time. We then color the chains in O(n) time
in total. Therefore, the total time complexity of the
algorithm is O(n log n). �
Figure 11 shows how Algorithm CFSC-H-

ThreeColors works by showing the first two
steps.

S1

S5

S6S4

S3

S2

S8

S7

(a)
S1

S5

S6S4

S3

S2

S8

S7

(b)

Figure 11: A conflict-free chromatic guarding of the
polygon in Figure 8 with three colors. (a) After col-
oring S1 and S2. (b) After coloring S7.

70


